SEVEN BEST PRACTICES IN SUSTAINABLE WINTER HIGHWAY MAINTENANCE OPERATIONS

XIANMING SHI, PH.D., P.E.
Visiting Professor, Wuhan Polytechnic University
Associate Professor, Washington State University
BENEFITS OF W.M. OPERATIONS

• Fewer accidents, improved mobility, reduced travel costs, reduced fuel use

• Sustained economic productivity, continued emergency services, ...
W.M. IN THE U.S.

- > 70% roads, 70% population affected
- Hwys: 2.3 $bLn/yr + 5 $bLn/yr

MnDOT Case Study:

- (4,600 crashes) = 29% ↓
- $10.9M in travel time savings
- $48.4M in user fuel savings
- Total $227M saved, b/c of 6.2

Intangible benefits

Increased traffic volumes
Higher customer demands
Funding, staffing and technology constraints

Safety
Cost
Effectiveness

Mobility / Productivity

Level of Service
Customer Satisfaction

Minimized Corrosion
Environmental Stewardship

WHAT, WHY, HOW

Deliver the right type & amount of materials in the right location at the right time

↑ effectiveness & efficiency of winter operations

↓ material usage, $$\$, environmental footprint

Balancing LOS vs. sustainability: best practice in technology & management domains

BP1: **Passive Snow Control**

- Reduce blowing & drifting snow
- Low cost snow storage
- Increased safety
- Reduce need for ice control product
- 25 yr lifespan at $1.40 per ft²

Wildlife habitat, control erosion, improve water quality, reduce spring-time flooding, sequester carbon

≥8 ft
BP2: **Operational Strategies**

Toolbox approach

- Local needs
- Rd weather scenarios
- Local constraints

Proactive vs. Reactive

- Anti-icing
- Deicing (**pre-wet** salt, DLA, ...)
- Sanding (**pre-wet** sand)
- Mechanical (plowing/blowing)
“...prevent the formation or development of bonded snow & ice by timely applications of a chemical freezing-point depressant” (vs. DLA)

↑ LOS, ↓ product, abrasives & plowing
20 – 65 gal/lane-mi
Cost savings + mobility & safety ↑
reducing impacts to the environment, infrastructure, vehicles

Limitations:
- Cold temps, rain/sleet 雨夹雪, blowing snow 飞雪, air temp above freezing & rising, high humidity
PRE-WETTING SOLID MATERIAL

Adding liquid to products or abrasives at stockpile or at the spreader 撒布器

Benefits

- Eases product management & distribution
- Accelerates breakup of snow/ice & enhances melting
- Minimizes bounce & scatter, improves performance
- Increases longevity on road = less frequent applications
CASE STUDY: SLURRY TECHNOLOGY

High volume liquid anti-icer to dry salt (30%:70%)
~ 60-90 gal/ton
200 lb/lane-mi = ~ 9 gal
Oatmeal consistency, salt grains fully saturated
Slurry auger (螺旋输送器) & at spinner (旋转器)
SALT MATRIX & PRE-SET SPREADER APPLICATION RATES

Goal: Reduce application rates while maintaining same LOS

Considers: pavement temp., heating/cooling trends, road condition at time of service, available maintenance strategies

Provides: recommended application rates for liquid and solid for initial & subsequent treatments on reference sheets

- 4 storm scenarios (light, moderate, & heavy snow, freezing rain)
- Drivers use their judgment to make decisions

Kentucky Department of Highways
Chemical Usage Has Environmental Footprint

Sustainability = economic growth + social progress + ecological balance

SALT MANAGEMENT PLANS

- A statement of policies & objectives
 - Identifies: road use, salt vulnerable areas, storage sites, snow disposal sites, training, ...
- Documentation
- Proposed approaches
- Training & Management Review
Determine your **baseline** 基线

Use collected data to find trends and track:

- Total length of road, Winter severity rating, Number of events, Material used, *Equipment Calibration* dates, Treatment effectiveness ...
Multi-Criteria Collaborative Decision Making

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Cost</th>
<th>Characteristic Temperature</th>
<th>Ice Melting Capacity</th>
<th>Corrosion to Metals</th>
<th>Effect on Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Cost-first</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2: Effects-first</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3: Performance-first</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4: Balanced-approach</td>
<td>7.0</td>
<td>7.5</td>
<td>7.8</td>
<td>7.9</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Anti-Icer Composite Index, User Scenario 1: Cost-First

- 80-100
- 60-80
- 40-60
- 20-40

CaCl₂·2H₂O Dosage (g/g NaCl)

- 1.20
- 0.98
- 0.76
- 0.54
- 0.33
- 0.23
- 0.17
- 0.11
- 0.06
- 0.00

Inhibitor Dosage (ml/g NaCl)

Multi-criteria Collaborative Decision Making

<table>
<thead>
<tr>
<th>Normalized Data</th>
<th>Cost per Lane Mile</th>
<th>Average Performance</th>
<th>Infrastructure /Vehicle Impacts</th>
<th>Environmental Impacts</th>
<th>Composite Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF Salt</td>
<td>73</td>
<td>59</td>
<td>27</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>BLKFT Salt</td>
<td>86</td>
<td>57</td>
<td>27</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Firth Salt</td>
<td>83</td>
<td>49</td>
<td>27</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Boise Salt</td>
<td>86</td>
<td>49</td>
<td>27</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Regular Salt</td>
<td>73±3</td>
<td>53</td>
<td>43</td>
<td>51±1</td>
<td></td>
</tr>
<tr>
<td>AF Slicer</td>
<td>84</td>
<td>50</td>
<td>27</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Ice Slicer BLKFT</td>
<td>79</td>
<td>56</td>
<td>27</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Ice Slicer Malad</td>
<td>79</td>
<td>49</td>
<td>27</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>BLKFT Brine</td>
<td>26</td>
<td>62</td>
<td>68</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Pocatello Brine</td>
<td>96</td>
<td>6</td>
<td>68</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Regular Brine</td>
<td>11±13</td>
<td>60</td>
<td>68</td>
<td>50±10</td>
<td></td>
</tr>
<tr>
<td>30% MgCl₂ Boise</td>
<td>0</td>
<td>61</td>
<td>82</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>100</td>
<td>86</td>
<td>82</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
<td>2</td>
<td>49</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

A “Supermix” (85% salt brine, 10% De-ice, and 5% CaCl₂): anti-icing above 15°F @ 40 gln/ln-mi pre-wetting above 2°F @ 10 gln/ton

PERFORMANCE MEASURES

工作指标

- Mobility 流动性, accessibility 可达性, reliability, safety
- Example: time to bare lane
- Measured as: return to speed, friction, visual inspection, etc.
IOWA DOT SALT MODEL

Allocates salt to garages based on weather conditions & policy usage requirements.

Creates a salt budget for each garage

Garage Salt Use Summary

<table>
<thead>
<tr>
<th>CC</th>
<th>Garage</th>
<th>Allocation (Tons)</th>
<th>Salt Used (Tons)</th>
<th>Salt Target (Tons)</th>
<th>% Target Used</th>
<th>% Allocation Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>551602</td>
<td>Ames</td>
<td>3,057</td>
<td>1,163.4</td>
<td>1,710.4</td>
<td>✓ 68.0%</td>
<td>✓ 38.1%</td>
</tr>
<tr>
<td>551604</td>
<td>Marshalltown</td>
<td>1,871</td>
<td>829.6</td>
<td>1,081.7</td>
<td>✓ 76.7%</td>
<td>✓ 44.3%</td>
</tr>
<tr>
<td>551605</td>
<td>Tama</td>
<td>2,122</td>
<td>717.8</td>
<td>642.5</td>
<td>× 111.7%</td>
<td>× 54.6%</td>
</tr>
<tr>
<td>551607</td>
<td>Grundy Center</td>
<td>1,714</td>
<td>459.8</td>
<td>689.1</td>
<td>✓ 66.7%</td>
<td>✓ 26.8%</td>
</tr>
<tr>
<td>551608</td>
<td>Iowa Falls</td>
<td>1,796</td>
<td>512.4</td>
<td>820.6</td>
<td>✓ 62.5%</td>
<td>× 28.5%</td>
</tr>
<tr>
<td>551609</td>
<td>Williams</td>
<td>2,179</td>
<td>726.3</td>
<td>1,133.7</td>
<td>✓ 64.1%</td>
<td>✓ 33.3%</td>
</tr>
<tr>
<td>551611</td>
<td>Fort Dodge</td>
<td>1,573</td>
<td>558.3</td>
<td>771.6</td>
<td>✓ 72.4%</td>
<td>✓ 35.5%</td>
</tr>
<tr>
<td>551612</td>
<td>Gowrie</td>
<td>840</td>
<td>156.0</td>
<td>449.4</td>
<td>× 34.7%</td>
<td>× 18.6%</td>
</tr>
<tr>
<td>551613</td>
<td>Jefferson</td>
<td>1,005</td>
<td>459.3</td>
<td>488.1</td>
<td>✓ 94.1%</td>
<td>× 45.7%</td>
</tr>
<tr>
<td>551614</td>
<td>Boone</td>
<td>1,263</td>
<td>688.2</td>
<td>573.5</td>
<td>× 120.0%</td>
<td>× 54.5%</td>
</tr>
<tr>
<td>551615</td>
<td>Malcom</td>
<td>1,185</td>
<td>628.4</td>
<td>674.4</td>
<td>✓ 93.2%</td>
<td>✓ 53.0%</td>
</tr>
<tr>
<td>551616</td>
<td>Grinnell</td>
<td>1,106</td>
<td>488.5</td>
<td>568.9</td>
<td>✓ 85.9%</td>
<td>✓ 44.2%</td>
</tr>
<tr>
<td>551617</td>
<td>Newton</td>
<td>2,370</td>
<td>921.3</td>
<td>1,045.9</td>
<td>✓ 88.1%</td>
<td>✓ 39.9%</td>
</tr>
<tr>
<td>551618</td>
<td>Altoona</td>
<td>1,261</td>
<td>542.6</td>
<td>410.9</td>
<td>× 132.0%</td>
<td>× 43.0%</td>
</tr>
<tr>
<td>551619</td>
<td>Des Moines North</td>
<td>2,778</td>
<td>972.4</td>
<td>1,012.0</td>
<td>✓ 96.1%</td>
<td>✓ 35.0%</td>
</tr>
<tr>
<td>551620</td>
<td>Grimes</td>
<td>3,750</td>
<td>1,264.8</td>
<td>1,636.0</td>
<td>✓ 77.3%</td>
<td>✓ 33.7%</td>
</tr>
<tr>
<td>551621</td>
<td>Carlisle</td>
<td>1,603</td>
<td>542.7</td>
<td>429.6</td>
<td>× 126.3%</td>
<td>× 33.9%</td>
</tr>
</tbody>
</table>

Statewide Salt Use vs. Target

Annette Dunn
Iowa DOT
MANAGING DEICER CORROSION EFFECTS

• Costs associated with corrosion to cold-climate DOT equipment assets are substantial (reduced value & service life, increased maintenance & repair costs, downtime & safety risk, ...)

• Agencies are recommended to establish their corrosion management program as an integral part of Fleet Management

• Efforts should be focused on efficient investment in corrosion cost avoidance, which may entail an extensive risk-based maintenance program to preserve the value & performance of equipment assets
HWM-BP3: *Improved Weather Forecasts*

Estimates of Labor and Materials Cost based on Level of Usage of UDOT Weather Operations Program

<table>
<thead>
<tr>
<th></th>
<th>High Cost</th>
<th>Low Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst Weather Info</td>
<td>$20</td>
<td>$15</td>
</tr>
<tr>
<td>Without UDOT Program</td>
<td>$15</td>
<td>$10</td>
</tr>
<tr>
<td>Actual</td>
<td>$10</td>
<td>$5</td>
</tr>
<tr>
<td>Full Use of Weather Program</td>
<td>$5</td>
<td>$5</td>
</tr>
</tbody>
</table>
Improved Weather Forecasts

PAVEMENT SENSORS & THERMAL MAPPING

热分布测绘：
Monitoring, planning, treatment strategies, forecasting
Invasive & non-invasive

www.vaisala.com
HWM-BP4: *Fixed Anti-icing Spray Technology*
固定防冰喷雾技术

FAST Summary

• Mixed picture
 o $$ savings: reduced mobile operations; reduced crash frequency/delay; less materials required
 o Challenges: activation frequency, system maintenance & training
• Installation challenges: site-specific
• Better system reliability via improvements in design, hardware, software, and installation techniques
• Appropriate only at a highly localized level, as a supplement to mobile operations
Safety Analysis of FAST

- FAST systems contributed to crash reductions of:
 - 2% on multilane rural highways
 - 16 – 70% on urban interstates
 - 31 – 57% on rural interstates
 - 19 – 40% on interchange ramps
 - Unclear for rural two-lane roads

- Changes to crash rates by severity provided safety benefits of $196,428 per winter
HWM-BP5: Advanced Snowplows

<table>
<thead>
<tr>
<th>Technology</th>
<th>Detect Environmental/Road Surface Conditions</th>
<th>Detect Obstacles</th>
<th>Detect Position on Roadway</th>
<th>Conduct Road Treatment</th>
<th>Improve Vehicle-to-Center Coordination</th>
<th>Track Vehicle Location and Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVL</td>
<td>*</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Surface Temperature Measuring Devices</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-board Freezing Pt. Detection System</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice-presence Detection System</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salinity Measuring Sensors</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millimeter Wave Radar Sensor</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual and Multi-Spectral Sensors</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FAST Systems</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

*Used for this application only when coupled with other sensor technologies

- Technologies often linked with AVL
AUTOMATIC VEHICLE LOCATION (自动车辆定位)
CONFIGURATION 布局

- Location / timestamp
- Environmental conditions
- Vehicle activity
- Vehicle status
- Other data

- In-vehicle unit
- Antenna
- Activity / status sensors

- Air temperature
- Road surface temperature
- Salinity
- Freezing point / ice detection
- Friction

In-vehicle unit
Antenna
Activity / status sensors
Mobile RWIS Technologies

Integrated with AVL to provide improved real-time knowledge of road & environmental conditions throughout a network

- Surface temperature measurement devices
- On-board freezing point & ice presence detection sensors
- Salinity sensors

RESIDUAL CHEMICAL MEASUREMENT

Salinity sensors have been used to make educated decisions about reapplication (Ye et al., 2012).

Monitor road surface product concentration
On-vehicle, embedded, or non-contact
Accurate/recalibrated application rates
Link measurements with automatic spreader controls

Benefits:
- Prevents over-application, saves material & $$$
PRECISION APPLICATION TO MANAGE & REDUCE CHEMICAL APPLICATIONS

Benefits
- Improved material placement
- Return on investment
- Reduced chemical usage
- Improved environmental stewardship

• Costs
 - Equipment
 - Training
 - Calibration
HWM-BP6: *Pavement Technologies*

- Anti-freezing pavements that rely on physical action
- Asphalt pavements containing anti-icing additives
- Heated pavements
- High-friction *in situ* anti-icing polymer overlays
Monitoring, planning, treatment strategy, prevent over-application

Colorado DOT
- Non-contact friction measurements
- Provide good short/long-term assessment of product performance
HWM-BP7: **MDSS**
<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Road Temp</th>
<th>Road Cond</th>
<th>% Ice</th>
<th>Maint Action</th>
<th>Notes</th>
<th>Date/Time</th>
<th>Road Temp</th>
<th>Road Cond</th>
<th>% Ice</th>
<th>Maint Action</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon 05:30AM 20</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 05:30AM 20</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 06:00AM 21</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 06:00AM 21</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 06:30AM 22</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 06:30AM 22</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 07:00AM 23</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 07:00AM 23</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 07:30AM 24</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 07:30AM 24</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 08:00AM 25</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 08:00AM 25</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 08:30AM 26</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 08:30AM 26</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 09:00AM 27</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 09:00AM 27</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 09:30AM 28</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 09:30AM 28</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 10:00AM 29</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 10:00AM 29</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 10:30AM 30</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 10:30AM 30</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 11:00AM 31</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 11:00AM 31</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 11:30AM 32</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 11:30AM 32</td>
<td>Dry</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 12:00PM 33</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 12:00PM 33</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 12:30PM 34</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 12:30PM 34</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 01:00PM 35</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 01:00PM 35</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 01:30PM 36</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 01:30PM 36</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 02:00PM 37</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 02:00PM 37</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 02:30PM 38</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 02:30PM 38</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 03:00PM 39</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 03:00PM 39</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 03:30PM 40</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 03:30PM 40</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 04:00PM 41</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 04:00PM 41</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 04:30PM 42</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 04:30PM 42</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 05:00PM 43</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 05:00PM 43</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 05:30PM 44</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 05:30PM 44</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 06:00PM 45</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 06:00PM 45</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 06:30PM 46</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 06:30PM 46</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 07:00PM 47</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 07:00PM 47</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 07:30PM 48</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 07:30PM 48</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 08:00PM 49</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 08:00PM 49</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 08:30PM 50</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 08:30PM 50</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 09:00PM 51</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 09:00PM 51</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 09:30PM 52</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 09:30PM 52</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 10:00PM 53</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 10:00PM 53</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 10:30PM 54</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 10:30PM 54</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 11:00PM 55</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 11:00PM 55</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 11:30PM 56</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 11:30PM 56</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 12:00AM 57</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 12:00AM 57</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
<tr>
<td>Mon 00:00AM 58</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
<td>Mon 00:00AM 58</td>
<td>Wet</td>
<td>0</td>
<td>0</td>
<td>Engaged</td>
<td>None</td>
</tr>
</tbody>
</table>

Notes:
- Engaged: Road conditions are active and require immediate attention.
- None: No issues at this time.

Date/Time:
- Mon 05:30AM: 05:30 Monday morning.
NH: MDSS BENEFITS & COSTS

- Benefits (per winter season)

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Delay Savings</th>
<th>Crash Savings</th>
<th>Resource Savings</th>
<th>Total Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same Conditions</td>
<td>$5,039</td>
<td>$335,052</td>
<td>$354,661</td>
<td>$694,752</td>
</tr>
<tr>
<td>Same Salt</td>
<td>$72,461</td>
<td>$786,385</td>
<td>$6,624</td>
<td>$865,470</td>
</tr>
</tbody>
</table>

- Costs per winter season: $332,879
- Benefit-Cost Ratios:
 - 2.1 (Same Conditions); 2.6 (Same Salt)

SUMMARY OF WM BEST PRACTICES

1. Passive Snow Control Measures
2. Operational Strategies
3. Improved Weather Forecasts
4. Fixed Automated Spray Technology
5. Advanced Snowplow Technologies
6. Pavement Technologies
7. Maintenance Decision Support System
TRAINING FOR SALT MANAGEMENT & WM OPERATIONS

Assess the needs of your staff

Consider who is being trained & how to best convey that information

Design training based on learning goals

Training methods:

- Classroom, field, post-storm debriefing, simulator, etc.
TRAINING CONTINUED...

Have experienced staff conduct the training
Evaluate your training program
Assess how much information was learned

Common training methods:
- Annual operator training, Snow University, Snow & Ice Rodeo, Computer Based Training (CBT)
A Look to the Future

- Technological & institutional barriers remain
- Micro-scale road weather forecasting & sensing
- ‘dynamic layer’ on the road surface: timing & freq.
- More integrated & automated onboard sensors + **Vehicle Infrastructure Integration**
- Performance measures + systematic approach to decision making in materials selection
- *Ultimate integration into the WM toolbox*: continued investment & efforts in R&D + user-needs driven product strategies
An Asset Management Framework

Policy Goals and Objectives

Integrated Evaluation of Alternatives and Tradeoffs
Program/project prioritization & optimization via scenario simulation ("what-if" analyses)

Decision on Allocating Agency Resources
Anti-icing vs. de-icing or sanding; chemical A vs. B; application rate

Program Delivery
Outsourcing, public/private partnership, procurement options, etc.

System Monitoring and Performance Results
Performance measures (including level of service & customer perceptions), economics, asset inventory (infrastructure & environment)

Quality Information and Analysis
E.g., resources, performance, costs, inventory, etc.

Feedback Mechanism
QUESTIONS?

Xianming Shi, PhD, PE
Visiting Professor, Wuhan Polytechnic University
Overseas PhD Advisor, Harbin Institute of Technology
Associate Professor, Department of Civil and Environmental Engineering
Washington State University
Sloan 101, PO Box 642910
Pullman, WA 99164-2910
Phone: 1-509-335-7088; Email: xianming.shi@wsu.edu