Prediction of Thermal Behavior of Pervious Concrete Pavements in Winter

Somayeh Nassiri, PhD, PEng
Assistant Professor, Civil & Environmental Engineering Department
Washington State University
Research Impetus

• Increased use of pervious concrete pavements in cold climate areas
• Maintaining winter safety/mobility require proper winter maintenance
 • Timely salting, anti-icing, deicing
• Research needs
 • 1) PCP thermal properties & behavior
 • 2) PCP temperature prediction as groundwork for winter maintenance practices
Project Objectives

1. Experimentally determine thermal conductivity (k) of pervious concrete in variable porosity
2. Predict PCP surface temp in winter based on field data
3. Develop relationship to predict surface temperature based on ambient conditions
Laboratory Experiment

• Two methods to determine k:
 • ASTM C518-15 Heat flow meter (FOX 304 by LaserComp TA instruments)
 • ASTM D5334-14 Heat impulse (Decagon RK-1 Rock Sensor Kit)
Mixture Design

• Mixture design

<table>
<thead>
<tr>
<th>Constituents in SSD conditions</th>
<th>lb/yd³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Aggregate</td>
<td>2,635</td>
</tr>
<tr>
<td>Type I/II Cement</td>
<td>568</td>
</tr>
<tr>
<td>Class F Fly ash</td>
<td>100</td>
</tr>
<tr>
<td>Water</td>
<td>161</td>
</tr>
</tbody>
</table>

• Specimens
 • 20 Cylinders (φ4”× 8”) cut in half
 • 6 Slabs (~11”×11”×3”)
Specimens Casting & Curing

• Compaction
 • Slabs porosity: 19, 21, 24, 26, 31, 36%
 • Cylinders: 16-23%

• Curing
 • Demolded & tested after 7 days air cured in lab

Compaction using Proctor hammer
Physical Properties

• Hardened Porosity (ASTM C1754)

\[
Air \text{ Void Content} = (1 - \frac{M_w - M_d}{\rho_w V})
\]

• Infiltration Test (ASTM C1701)

\[
I = \frac{KM}{D^2 t}
\]

M: mass of infiltrated water in lbs,
D: inside diameter of infiltration ring in inch
T: time required for designated mass of water to infiltrate through PC in seconds
K: correction factor equal to 126,870 inch.
1. **Heat flow meter** (ASTM C518)

 • Conductivity based on Fourier’s Law: ability of material to transfer heat through a unit-length thickness.

 \[q = -K \frac{\partial T}{\partial x} \]

 FOX 304 Heatflow meter
2. **Sensor probe** RK-1 Rock Sensor Kit
 - Applies heat impulse
 - Auto log data
Test Results-Slabs

- RK-1 higher k than FOX 304
- FOX 304 shows less variation
 - Due to temp-controlled environment

$k_{probe} = -1.25\phi + 0.76$
$R^2 = 0.76$

$k_{heatflow} = -1.52\phi + 0.93$
$R^2 = 0.67$

$1 \text{ W/(mK)} = 1.7307 \times \text{Btu/(hr ft °F)}$
Comparison of Two Methods

- Heat Flow Meter captures k of slabs using whole depth from top to bottom in several heat steps.
- Values of k from **RK-1** Sensor based on contact area of probe & specimen. Probe length 2.33 in \Rightarrow bottom 1.67 in of slab neglected.

![Graph showing conversion from RK2 to heatflow](attachment:chart.png)

- $y = 0.8225x - 0.019$
- $R^2 = 0.8813$
• Bottom halves: $k = 0.49 \text{ W/(mK)}$
• Top halves: $k = 0.56 \text{ W/(mK)}$ for top halves
Geometric Parallel Model

\[
\log K_p = V_{air} \log K_{air} + V_{paste} \log K_{paste} + V_{agg} \log K_{agg}
\]

Air voids, \(V_{air}, k_{air}\)

Cement Paste, \(V_{paste}, k_{paste}\)

Coarse Aggregate, \(V_{agg}, k_{agg}\)

\(Q\)

(Nassiri & Nantasai 2017)

<table>
<thead>
<tr>
<th>(k_{agg}) (crushed Basalt) W/(mK)</th>
<th>(K_{paste}) W/(mK)</th>
<th>(K_{air}) W/(mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.69</td>
<td>0.98</td>
<td>0.026</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(V_{air} = \varphi)</th>
<th>(V_{agg})</th>
<th>(V_{paste})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19</td>
<td>0.47</td>
<td>0.34</td>
</tr>
<tr>
<td>0.21</td>
<td>0.46</td>
<td>0.33</td>
</tr>
<tr>
<td>0.24</td>
<td>0.44</td>
<td>0.32</td>
</tr>
<tr>
<td>0.26</td>
<td>0.43</td>
<td>0.31</td>
</tr>
<tr>
<td>0.31</td>
<td>0.40</td>
<td>0.29</td>
</tr>
<tr>
<td>0.36</td>
<td>0.37</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Model’s Accuracy

- Slabs

\[y = 1.016x + 0.011 \]

\[R^2 = 0.80 \]

Dry slabs - 1:1 line
Model Predictions

• Cylinders

![Graph showing predicted vs measured K (W/mK)]

- Predicted K (W/mK)
- Measured K (W/mK)

1:1 Line

- Bottom Half
- Top Half

Equations:

\[y = 0.72x + 0.24 \quad \text{R}^2 = 0.49 \]

\[y = 0.66x + 0.21 \quad \text{R}^2 = 0.21 \]
Field Data Collection
Instrumented Field Project

- Weather station on campus
 - Ambient temp, RH, wind speed
 - Solar radiation from on-site pyranometer
Sensor Tree Details

- Two sensor trees:
 - Monitor volumetric water content & temp of PCP (5TE sensors)
 - Seven thermocouples
• No. of days that temp fell below 32°F:
 • Year 1: 39 days
 • Year 2: 64 days
Pavement Temp Data

- Sensor Tree A and B same data
- No. of days that temp fell below 32F:
 - Year 1: 43 days
 - Year 2: 66 days
Zone A Temperature Comparison @ Different Depths

Days from 5/21/2015 - 4/4/2017

Temperature at (°F)

0.5"
1.5"
2"
3"
Boundary Conditions

• Predict surface temperature for winter maintenance
• Enhanced Integrated Climatic Model (EICM)

\[
\frac{d}{dx} \left(K \cdot \frac{dT}{dx} \right) = \rho \cdot C_p \cdot \frac{dT}{dt}
\]

(Dempsey et al. 1983)

\[
Q_{rad} = Q_s - Q_r - Q_e + Q_a
\]

\(Q_s\) = Radiation from space, Btu/hr·ft²·°F,
\(Q_r\) = Reflection from clouds, Btu/hr·ft²·°F,
\(Q_e\) = Reflection from the pavement, Btu/hr·ft²·°F,
\(Q_a\) = Radiation bounced from clouds, Btu/hr·ft²·°F.
In-situ Porosity

• Total Porosity & Infiltration

\[P = 0.002I + 20 \]

P = whole porosity, %
I = Infiltration (cm/hr)

(Haselbach & Freeman 2006)

• Porosity of each Layer

\[P_{\text{top}} = 1.07P - 7 \quad P_{\text{mid}} = P \quad P_{\text{bot}} = 0.93P + 7 \]

\[P_{\text{top}} = \text{Porosity 1/3 PCP depth, \%} \]
\[P_{\text{mid}} = \text{Porosity 2/3 PCP depth, \%} \]
\[P_{\text{bot}} = \text{Porosity 3/3 PCP depth, \%} \]

(Haselbach et al. 2016)
Estimate Thermal Properties

• Thermal conductivity:

\[\log K_p = n_{air} \log K_{air} + n_{paste} \log K_{paste} + n_{agg} \log K_{agg} \]

• Specific heat (\(C_p\)) of PC from \(C_p\) of components

\[C_p = x_{agg} C_{agg} + x_{conc} C_{conc} + x_{air} C_{air} \]

• \(x_{agg}, x_{conc} \) & \(x_{air}\): volumetric fractions

• \(C_{agg}, C_{conc} \) & \(C_{air}\): specific heat of aggregate, cement paste, & air

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Volume Fraction (%)</th>
<th>(C_p) Btu/(lb˚F)</th>
<th>(K) BTU/(ft(^2)hr˚F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone Coarse Aggregate</td>
<td>60.7</td>
<td>1214.2</td>
<td>3.72</td>
</tr>
<tr>
<td>Cement Paste</td>
<td>19.3</td>
<td>837.3</td>
<td>0.77</td>
</tr>
<tr>
<td>Air</td>
<td>20.0</td>
<td>100.5</td>
<td>0.036</td>
</tr>
</tbody>
</table>

References available in Nantasai (2016)
EICM Prediction Discussion

- Overall good agreement
- Past Day 100: highly influenced by solar radiation & require characterization of surface emissivity

0.5-inch depth
• Best agreements achieved when ambient temp between 20-50°F

\[y = 0.82x + 7.36 \]

\[R^2 = 0.80 \]
Regression Model

\[T_{surf} = 15.28 + 0.3486 \cdot T_{amb} + 0.1152 \cdot h_c + 0.03 \cdot S - 108.6 \cdot P - 0.0458 \cdot RH \\
+ 0.006350 \cdot T_{amb}^2 - 0.004546 \cdot h_c^2 + 0.005284 \cdot T_{amb} \cdot h_c - 0.000869 \cdot T_{amb} \cdot S \\
+ 0.001159 \cdot T_{amb} \cdot RH + 0.001394 \cdot h_c \cdot S - 0.000199 \cdot S \cdot RH + 1.211 \cdot P \cdot RH \]

- \(T_{amb} \) = Ambient temperature, F
- \(h_c \) = Wind speed, mph
- \(S \) = Percent sunshine, %
- \(P \) = Precipitation, in
- \(RH \) = Relative Humidity, %.

- Identify freezing potential of surface out of 121 days:
 - 67 days measured Vs. 57 days predicted
Conclusions

• Thermal conductivity of slabs obtained using heat flow
• Experiment expanded to cylinders using needle probe
• Relationship developed between k and porosity
• Linear relationship developed to predict thermal properties based on mixture design
• Best estimate of in-situ porosity required
Conclusions

• In-field temp measurements form instrumented section used to validate a temp model

• EICM surface temp prediction agreed with 85% of measured temp

• Linear regression model developed using major climatic indices to estimate surface temp with good agreement
Recommendations

- More mixtures designs, structural designs need tested to expand parallel model
- Mixtures with a variety of aggregate to be tested
- Expand modeling to non-overcast conditions
 - Surface emissivity
 - Evaporation at surface
 - Presence of water
Acknowledgements

- Center for Environmentally Sustainable Transportation in Cold Climates (CESTiCC) for funding
- Washington State Facilities for in-kind support and collaboration during pavement installation & instrumentation
- Benjamin Nantasai, MS student that worked on the project at the time
- Dr. Liv Haselbach for collaboration
Ongoing Research

- Skid Resistance in dry, wet, ice
- Application of anti/deicer agents
References

Thank you! Questions?