A green inhibitor derived from peony leaves and its performance for protecting carbon steel from aqueous corrosion

Mehdi Honarvar Nazari, Xianming Shi
Corrosion and Sustainable Infrastructure Laboratory (CSIL), Western Transportation Institute, Montana State University, Bozeman, MT

INTRODUCTION
- Green corrosion inhibitors feature low cost, low environmental impact, and effective protection.
- The green compounds contain oxygen, nitrogen and sulfur which have high electron density, and can be readily adsorbed on the surface of metal.
- The adsorbed film forms a barrier against corrosive agents.
- Inhibition efficiency of adsorbed barrier layer depends on adsorption type and characteristics of the layer.

OBJECTIVE
- Corrosion behavior of carbon steel was investigated in the presence of a new green inhibitor derived from peony leaves via chemical and biological degradation processes.

EXPERIMENTAL PROCEDURES

Materials: C1010 carbon steel coupons were exposed to the 3.5% NaCl solution.

Electrochemical analysis: OCP, LPR, EIS and polarization

Surface analysis: Digital photo, FEM, EDS, XRD and XPS

Liquid chromatography mass spectrometry (LC MS): HPLC separation with ESI-MS detection

Wettability of steel surface (contact angle): The contact angle between the dropped water and the sample surface

RESULTS
- The main compounds of peony leaves derived solution (PLS) are Demethoxyisogemichalcone C, Ganodermic acid TQ, 1-docosanoyl-glycero-3-phosphate
- After a 16-day immersion period, the corrosion was less localized.
- PLS was a cathodic inhibitor and formed a protective layer on the surface of steel.
- The formed layer was composed of an adsorbed organic film and a γ-Fe$_2$O$_3$/γ-FeOOH film.
- The compactness of oxide layer was improved with the increase in green inhibitor dosage.
- PLS increased the hydrophobicity of steel surface.
- The standard free energy of adsorption was -21.7 kJ/ppm which shows that the adsorption type was physical.

CONCLUSION
- A peony leaves derived solution (PLS) provided an inhibition efficiency of 60-70% at 3 vol.% on the corrosion of C1010 carbon steel in simulated seawater over a 16-day immersion period.
- In the presence of green inhibitor the corrosion was less localized.
- PLS was a cathodic inhibitor and formed a protective layer on the surface of steel.
- The formed layer was composed of an adsorbed organic film and a γ-Fe$_2$O$_3$/γ-FeOOH film.
- The compactness of oxide layer was improved with the increase in green inhibitor dosage.
- PLS increased the hydrophobicity of steel surface.
- The standard free energy of adsorption was -21.7 kJ/ppm which shows that the adsorption type was physical.